Asymptotic Abelianness, weak mixing, and property T
نویسندگان
چکیده
منابع مشابه
Asymptotic Abelianness of Infinite Factors
Studying Pukanszky's type III factor, M2, we show that it does not have the property of asymptotic abelianness and discuss how this property is related to property L. We also prove that there are no asymptotic abelian II factors. The extension (by ampliation) of central sequences in a finite factor, N, to M ® N is shown to be central. Also, we give two examples of the reduction (by equivalence)...
متن کاملasymptotic property of order statistics and sample quntile
چکیده: فرض کنید که تابعی از اپسیلون یک مجموع نامتناهی از احتمالات موزون مربوط به مجموع های جزئی براساس یک دنباله از متغیرهای تصادفی مستقل و همتوزیع باشد، و همچنین فرض کنید توابعی مانند g و h وجود دارند که هرگاه امید ریاضی توان دوم x متناهی و امیدریاضی x صفر باشد، در این صورت می توان حد حاصلضرب این توابع را بصورت تابعی از امید ریاضی توان دوم x نوشت. حالت عکس نیز برقرار است. همچنین ما با استفاده...
15 صفحه اولA sufficient condition for pseudointegrable systems with weak mixing property
We present a sufficient condition that a pseudointegrable system has weak mixing property. The result is derived from Veech’s weak mixing theorem for interval exhange [Veech, W.A. Amer.J.Math. 106, 1331 (1984)]. We also present an example whose weak mixing property can be proved by the result.
متن کاملThe Weak Repulsion Property
In 1926 M. Lavrentiev [7] proposed an example of a variational problem whose infimum over the Sobolev spaceW, for some values of p ≥ 1, is strictly lower than the infimum overW1,∞. This energy gap is known since then as the Lavrentiev phenomenon. The aim of this paper is to provide a deeper insight into this phenomenon by shedding light on an unnoticed feature. Any energy that presents the Lavr...
متن کاملWeak Banach-Saks property in the space of compact operators
For suitable Banach spaces $X$ and $Y$ with Schauder decompositions and a suitable closed subspace $mathcal{M}$ of some compact operator space from $X$ to $Y$, it is shown that the strong Banach-Saks-ness of all evaluation operators on ${mathcal M}$ is a sufficient condition for the weak Banach-Saks property of ${mathcal M}$, where for each $xin X$ and $y^*in Y^*$, the evaluation op...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal für die reine und angewandte Mathematik (Crelles Journal)
سال: 2008
ISSN: 0075-4102,1435-5345
DOI: 10.1515/crelle.2008.077